
 

The 
 

 

csv Object 
Handbook 

for 
OpenBVE 

 
 
 
 

Patrick Norqvist 



 



 

The 
 

 

csv Object 
Handbook 

for 
OpenBVE 

 
 
 
 

Patrick Norqvist 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Unofficial csv Object Handbook for OpenBVE                                

 
Author: Patrick Norqvist 
ISBN: 978-91-982993-3-5 
Website: www.openbve.net 
Copyright © 2015 Patrick Norqvist 
First edition 
 
 
 
 



Preamble 
 

This handbook is a try to explain the csv object file format for OpenBVE. 
It is a follow up to the previously published handbook on the x object file 
format. 
 
The material is mainly derived from the documentation published on the 
BVEstation Wiki website http://wiki.bvestation.com/. 
 
As this is the first edition, there may be errors that have escaped the proof-
reading process. The author apologies if this is the case, and kindly ask 
readers to report any errors found to the e-mail address 
error@openbve.net 

 
The reader is expected to be familiar with the operation of the OpenBVE 
train simulator, and having installed and be familiar with development 
programs such as the OpenBVE Object Viewer, and text-file editors. 
 
Credits are also given to: 

• BVE Klub, with its website http://www.bveklub.hu/ , from 
which the illustration to the Shear statement in chapter 5 is taken. 

• Mr. Anthony Bowden, with his website 
http://www.railsimroutes.net/ , for his csv object files 
in the OpenBVE route "Birmingham Cross-City South", another 
good source of information, and also the source of the tree texture 
taken as an example is chapter 6. 



 



Table of Contents 
 
 
 

1 Building a simple object 1 
2 Using textures 7 
3 Using colors 19 
4 Geometric shortcuts 25 
5 Manipulating objects 31 
6 Transparency 37 
7 Statements in alphabetical order 49 
        AddFace 50 
        AddFace2 51 
        AddVertex 52 
        CreateMeshBuilder 53 
        Cube 54 
        Cylinder 55 
        GenerateNormals 57 
        LoadTexture 58 
        Rotate 59 
        RotateAll 61 
        Scale 62 
        ScaleAll 63 
        SetBlendMode 64 
 
 



 
 
 
 

        SetColor 65 
        SetDecalTransparentColor 66 
        SetEmissiveColor 67 
        SetTextureCorordinates 68 
        Shear 69 
        ShearAll 70 
        Translate 71 
        TranslateAll 72 
        ; 73 
 



 



 



The Unofficial csv Object Handbook for OpenBVE

Chapter 1

Building a simple object

- 1 -



The Unofficial csv Object Handbook for OpenBVE

The csv file format allows us to build objects by writing a number of statements in a 
text file. Most of the statements used in the csv file format, has its equivalents in the  
b3d object file format, and in a less extent in the x object file format The file 
extension should be “.csv”.

To learn to know the csv object file format, we start with making a simple object, a 
cube with colored surfaces.

The first we write in the text file is the CreateMeshBuilder statement:

CreateMeshBuilder

This statement begins a section of definition of a mesh, its faces and colors/textures. 
There can be more than on CreateMeshBuilder statement in an object file. All other 
statements refers to the last CreateMeshBuilder section of the object file..

Now we will start to define the vertices for the cube we are going to build.

Each vertex has the coordinates (x,y,z) to define its location in the 3D world. The 
cube has a side of 1 meter, and is located with its right bottom front corner (-1,1,1) 
1 meter to the left on the x-axis (which gives a negative x coordinate), one meter up 
on the y axis and 1 meter forward on the z axis.

- 2 -



The Unofficial csv Object Handbook for OpenBVE

We add the cube's 8 vertices to the csv file using the AddVertex statement:

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

After the AddVertex statement follow the coordinates x, y, z; for each of the 8 
vertices of the cube. The 8 vertices has numbers from 0 to 7

We also make comments in the code. A comment starts with a semicolon “;”.

There is also a possibility to add another set of x,y,z coordinates as parameters to 
each AddVertex statement. That is if one want to tweak the normals of the vertex. If 
no such parameters are given, such in this example, the normals are automatically 
calculated.

We can pick the vertices in any order, in this case they were picked as this:

Next we define the faces of the cube. Faces are surfaces that are “stretched” between 
vertices. The cube may have up to 6 faces. If we define all or just a few depends on if 
all feces well be seen when the object is placed in the simulation.

- 3 -



The Unofficial csv Object Handbook for OpenBVE

In this this case, we will define all possible faces of the tube so that we can turn it any
way and still see the object as a cube.

We add the cubes 6 faces  using the numbers of the vertices that we have already 
begun with. We define a face using the AddFace statement, and as parameters listing 
the vertex numbers, in clockwise order seen from the outside of the object:

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 0, 1, 3, 2,  ; Face 0
  AddFace, 1, 5, 7, 3,  ; Face 1
  AddFace, 5, 4, 6, 7,  ; Face 2
  AddFace  4, 0, 2, 6,  ; Face 3
  AddFace, 4, 5, 1, 0,  ; Face 4
  AddFace, 2, 3, 7, 6,  ; Face 5

Here face 0 is the front of the cube, face 1 the right side, face 2 the back side, face 3 
the left side, face 4 the top and face 5 the bottom of the cube.

Then we want to add colors to the faces so that they can be seen. We use the SetColor
statement that will apply a color to each face in the same CreateMeshBuilder section. 
Here we want a green color on all 6 faces.

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6

- 4 -



The Unofficial csv Object Handbook for OpenBVE

  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 0, 1, 3, 2,  ; Face 0
  AddFace, 1, 5, 7, 3,  ; Face 1
  AddFace, 5, 4, 6, 7,  ; Face 2
  AddFace, 4, 0, 2, 6,  ; Face 3
  AddFace, 4, 5, 1, 0,  ; Face 4
  AddFace, 2, 3, 7, 6,  ; Face 5

  SetColor, 0, 255, 0, 255  ; Red Green Blue Alpha

The SetColor statement takes a number of parameters. The first parameters are the 
colors that is separated into the format RGBA, which means the first parameter 
determines the amount of red, the second the amount of green, the third the amount of
blue, and the fourth the alpha channel. All colors can be made up of a proper mix of 
red, green and blue. The alpha channel determines the amount of transparency of the 
color. As we want no transparency, we set the value to 255 (a value of 0 will mean 
full transparency). The value for each of these 4 parameters can range from 0 to 255.

Now we have the complete text for the csv object file of the green cube. If we put this
text in a text file with the name such as “Cube_green.csv” we can watch the result in 
the OpenBVE Object Viewer:

- 5 -



The Unofficial csv Object Handbook for OpenBVE

If we in the OpenBVE Object Viewer toggles Normals to on, we will see the normals 
that were automatically created for the vertices of each surface:

If we for some reason need to be able to see a face from both sides, there is a special 
statement AddFace2. Its parameters are the same as for the AddFace statement, and 
the vertices' numbers are given in clockwise order for the front side face. The 
difference is that the face will also be visible from the other side. There are however a
few drawbacks: The lighting of the back side might not be correct, but be the same as 
on the front side face. Only convex polygons are supported for use of the AddFace2 
statement. For the green cube, using the AddFace2 statement gives us this code:

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace2, 0, 1, 3, 2,  ; Face 0
  AddFace2, 1, 5, 7, 3,  ; Face 1
  AddFace2, 5, 4, 6, 7,  ; Face 2
  AddFace2, 4, 0, 2, 6,  ; Face 3
  AddFace2, 4, 5, 1, 0,  ; Face 4
  AddFace2, 2, 3, 7, 6,  ; Face 5

  SetColor, 0, 255, 0, 255  ; Red Green Blue Alpha

- 6 -



The Unofficial csv Object Handbook for OpenBVE

Chapter 2

Using textures

- 7 -



The Unofficial csv Object Handbook for OpenBVE

Now we will use the cube created in chapter 1 and see how to apply a texture to the 
cube's faces. We will use a rock surface texture, to make it looks like the cube is 
made from stone.

Searching the Internet, we find a number of suitable textures. One is downloaded. 

Using a simple image editing program, such as the freeware program IrfanView, we 
change the width and height of the picture to be a power of 2. If the original image 
width was 2592 pixels and the height 1944 pixels, we can change the with to
211=2048 pixels and the height to 210=1024 pixels. After adapting the image size, we 
save the image as a Portable Network Graphics (.png) file with the name 
“RockTexture.png”. The  Portable Network Graphics format compresses the file 
without distorting it in any way.

In the csv object file for the cube, we will replace the SetColor statement with the 
LoadTexture statement.

We will also add texture coordinates for all 8 vertices.

The whole csv object file will now be this:

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1

- 8 -



The Unofficial csv Object Handbook for OpenBVE

  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 0, 1, 3, 2,  ; Face 0
  AddFace, 1, 5, 7, 3,  ; Face 1
  AddFace, 5, 4, 6, 7,  ; Face 2
  AddFace, 4, 0, 2, 6,  ; Face 3
  AddFace, 4, 5, 1, 0,  ; Face 4
  AddFace, 2, 3, 7, 6,  ; Face 5

  LoadTexture, RockTexture.png,

  ; Texture coord @ vertex 0
  SetTextureCoordinates, 0, 0.000000, 0.500000,
  ; Texture coord @ vertex 1
  SetTextureCoordinates, 1, 0.500000, 0.500000,
  ; Texture coord @ vertex 2
  SetTextureCoordinates, 2, 0.000000, 1.000000,
  ; Texture coord @ vertex 3
  SetTextureCoordinates, 3, 0.500000, 1.000000,
  ; Texture coord @ vertex 4
  SetTextureCoordinates, 4, 0.000000, 0.000000,
  ; Texture coord @ vertex 5
  SetTextureCoordinates, 5, 0.500000, 0.000000,
  ; Texture coord @ vertex 6
  SetTextureCoordinates, 6, 1.000000, 0.000000,
  ; Texture coord @ vertex 7
  SetTextureCoordinates, 7, 1.000000, 1.000000,

There is a number of ways to arrange the texture coordinates. In this case, they are 
given in such a way that  the 3 visible sides of of the cube are textured. The bottom 
and far side will however look silly. Normally, that does not matter as the object is 
viewed from almost only one direction, that is from the engineer's seat in a passing 
train.

- 9 -



The Unofficial csv Object Handbook for OpenBVE

We take a closer look how the texture is applied to the cube above.

  ; Texture coord @ vertex 0
  SetTextureCoordinates, 0, 0.000000, 0.500000,
  ; Texture coord @ vertex 1
  SetTextureCoordinates, 1, 0.500000, 0.500000,
  ; Texture coord @ vertex 2
  SetTextureCoordinates, 2, 0.000000, 1.000000,
  ; Texture coord @ vertex 3
  SetTextureCoordinates, 3, 0.500000, 1.000000,
  ; Texture coord @ vertex 4
  SetTextureCoordinates, 4, 0.000000, 0.000000,
  ; Texture coord @ vertex 5
  SetTextureCoordinates, 5, 0.500000, 0.000000,
  ; Texture coord @ vertex 6
  SetTextureCoordinates, 6, 1.000000, 0.000000,
  ; Texture coord @ vertex 7
  SetTextureCoordinates, 7, 1.000000, 1.000000,

The cube itself has its 8 vertices numbered 0..7. For each of these vertices are given 
the coordinates of the point of the texture that should be “attached” to that vertex. 

- 10 -



The Unofficial csv Object Handbook for OpenBVE

The coordinates of the texture is on the A axis from the left to the right, varying from 
0..1, and on the B axis from the top to the bottom, varying from 0..1.

In the figure at the top of next side, we shown the texture (in red) folded, and how 
each vertex of the cube (in blue) is connected to a point of the texture. We see that the
front and the top of the cube is easily connected to the texture. The right side 
however, is not connected to the texture in an easy way, as we have already used 3 of 
its 4 vertices (vertex # 3, 1 and 5) in specifying the texture for the front and the top of
the cube. So we only can chose which point in the texture to connect with vertex 7. 
We chose the texture coordinate (1,1), which gives a reasonable result for the 3 faces 
that could be seen from the passing train. But this is only true if the texture is 
irregular as the pattern of the rock.

- 11 -



The Unofficial csv Object Handbook for OpenBVE

If these is a regular texture, such as a wooden box, we must resort to another method 
to get a reasonable result.

The problem is that for each vertex in the cube there can only be specified on texture 
coordinate. If we want to specify 2 different texture coordinates for one vertex in the 
cube, we seem to have to resort to making 2 cubes in the same place. That means we 
add another set of 8 vertices where the vertex coordinates are the same as for the 
8 vertices we already have.

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex  0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex  1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex  2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex  3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex  4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex  5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex  6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex  7
  AddVertex, -2.000000,2.000000,1.000000, ; Vertex  8
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex  9
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 10
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 11
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 12

- 12 -



The Unofficial csv Object Handbook for OpenBVE

  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 13
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 14
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 15

  AddFace, 0, 1, 3, 2,      ; Face 0
  AddFace, 1, 5, 7, 3,      ; Face 1
  AddFace, 5, 4, 6, 7,      ; Face 2
  AddFace, 4, 0, 2, 6,      ; Face 3
  AddFace, 12, 13, 9, 8,    ; Face 4
  AddFace, 10, 11, 15, 14,  ; Face 5

For the first 4 faces of the cube, that is the front, back, left and right faces, we use the 
same vertex numbers as before. But for the top and bottom face, we use the extra 
vertices 8..15 that we added. So now we have 2 vertices for each corner of the cube 
(the newly added in green numbers):

We still do specify 1 texture, which is the texture “RockTexture.png”:

  LoadTexture, RockTexture.png,

Then we come to the texture coordinates, which are to be set for all 16 vertices.

  ; Texture coord @ vertex  0
  SetTextureCoordinates, 0,  0.000000, 0.000000,
  ; Texture coord @ vertex  1
  SetTextureCoordinates, 1,  0.500000, 0.000000,
  ; Texture coord @ vertex  2

- 13 -



The Unofficial csv Object Handbook for OpenBVE

  SetTextureCoordinates, 2,  0.000000, 1.000000,
  ; Texture coord @ vertex  3
  SetTextureCoordinates, 3,  0.500000, 1.000000,
  ; Texture coord @ vertex  4
  SetTextureCoordinates, 4,  0.500000, 0.000000,
  ; Texture coord @ vertex  5
  SetTextureCoordinates, 5,  1.000000, 0.000000,
  ; Texture coord @ vertex  6
  SetTextureCoordinates, 6,  0.500000, 1.000000,
  ; Texture coord @ vertex  7
  SetTextureCoordinates, 7,  1.000000, 1.000000,
  ; Texture coord @ vertex  8
  SetTextureCoordinates, 8,  0.000000, 0.000000,
  ; Texture coord @ vertex  9
  SetTextureCoordinates, 9,  1.000000, 0.000000,
  ; Texture coord @ vertex 10
  SetTextureCoordinates, 10, 0.000000, 0.000000,
  ; Texture coord @ vertex 11
  SetTextureCoordinates, 11, 1.000000, 0.000000,
  ; Texture coord @ vertex 12
  SetTextureCoordinates, 12, 0.000000, 1.000000,
  ; Texture coord @ vertex 13
  SetTextureCoordinates, 13, 1.000000, 1.000000,
  ; Texture coord @ vertex 14
  SetTextureCoordinates, 14, 0.000000, 1.000000,
  ; Texture coord @ vertex 15
  SetTextureCoordinates, 15, 1.000000, 1.000000,

We wrap the texture around the cube's vertical sides (front, left back and right sides, 
attaching texture coordinates to the 8 vertices 0 to 7. The texture is attached to the 
front and right side, then repeated at the back and right sides:

- 14 -



The Unofficial csv Object Handbook for OpenBVE

- 15 -



The Unofficial csv Object Handbook for OpenBVE

To attach texture to the top and bottom face of the cube, we use the 8 new vertices 
8..15

Now we have a cube with a proper texture at all 6 faces:

- 16 -



The Unofficial csv Object Handbook for OpenBVE

The csv object file for this cube is:

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex  0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex  1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex  2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex  3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex  4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex  5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex  6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex  7
  AddVertex, -2.000000,2.000000,1.000000, ; Vertex  8
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex  9
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 10
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 11
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 12
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 13
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 14
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 15

  AddFace, 0, 1, 3, 2,      ; Face 0
  AddFace, 1, 5, 7, 3,      ; Face 1
  AddFace, 5, 4, 6, 7,      ; Face 2
  AddFace, 4, 0, 2, 6,      ; Face 3
  AddFace, 12, 13, 9, 8,    ; Face 4
  AddFace, 10, 11, 15, 14,  ; Face 5

  LoadTexture, RockTexture.png,

  ; Texture coord @ vertex  0
  SetTextureCoordinates, 0,  0.000000, 0.000000,
  ; Texture coord @ vertex  1
  SetTextureCoordinates, 1,  0.500000, 0.000000,
  ; Texture coord @ vertex  2
  SetTextureCoordinates, 2,  0.000000, 1.000000,
  ; Texture coord @ vertex  3
  SetTextureCoordinates, 3,  0.500000, 1.000000,
  ; Texture coord @ vertex  4
  SetTextureCoordinates, 4,  0.500000, 0.000000,
  ; Texture coord @ vertex  5
  SetTextureCoordinates, 5,  1.000000, 0.000000,

- 17 -



The Unofficial csv Object Handbook for OpenBVE

  ; Texture coord @ vertex  6
  SetTextureCoordinates, 6,  0.500000, 1.000000,
  ; Texture coord @ vertex  7
  SetTextureCoordinates, 7,  1.000000, 1.000000,
  ; Texture coord @ vertex  8
  SetTextureCoordinates, 8,  0.000000, 0.000000,
  ; Texture coord @ vertex  9
  SetTextureCoordinates, 9,  1.000000, 0.000000,
  ; Texture coord @ vertex 10
  SetTextureCoordinates, 10, 0.000000, 0.000000,
  ; Texture coord @ vertex 11
  SetTextureCoordinates, 11, 1.000000, 0.000000,
  ; Texture coord @ vertex 12
  SetTextureCoordinates, 12, 0.000000, 1.000000,
  ; Texture coord @ vertex 13
  SetTextureCoordinates, 13, 1.000000, 1.000000,
  ; Texture coord @ vertex 14
  SetTextureCoordinates, 14, 0.000000, 1.000000,
  ; Texture coord @ vertex 15
  SetTextureCoordinates, 15, 1.000000, 1.000000,

- 18 -



The Unofficial csv Object Handbook for OpenBVE

Chapter 3

Using colors

- 19 -



The Unofficial csv Object Handbook for OpenBVE

The first cube we made in chapter 1 had all sides green. For each CreateMeshBuilder 
statement there can only be one SetColor and/or LoadTexture statement, which will 
be applied to all faces declared in that CreateMeshBuilder section. We can use 
different colors on the faces of the cube, if we specify one CreateMeshBuilder section
for each color..

We want to make a cube looking like this, with the front and back sides green, the 
right and left side blue and the top and bottom red:

We use three CreateMeshBuilder sections, specify only the faces needed in each such 
a section, and apply a color to those faces. The csv object file will be like this:

CreateMeshBuilder  // Section for the green faces

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5

- 20 -



The Unofficial csv Object Handbook for OpenBVE

  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 0, 1, 3, 2,  ; Face 0 – Front face
  AddFace, 5, 4, 6, 7,  ; Face 1 - Back face

  SetColor, 0, 255, 0, 255  ; Red Green Blue Alpha

CreateMeshBuilder  // Section for the blue faces

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 1, 5, 7, 3,  ; Face 0 – Right side face
  AddFace, 4, 0, 2, 6,  ; Face 1 – Left side face

  SetColor, 0, 0, 255, 255  ; Red Green Blue Alpha

CreateMeshBuilder  // Section for the red faces

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 4, 5, 1, 0,  ; Face 0 – Top face
  AddFace, 2, 3, 7, 6,  ; Face 1 – Bottom face

  SetColor, 0, 255, 0, 255  ; Red Green Blue Alpha

- 21 -



The Unofficial csv Object Handbook for OpenBVE

If we look at this cube from below, we see that its bottom is in shadow as the light 
source shines from above in the simulation.

If we however wants the bottom to be a light source itself, and as that not affected by 
shadows, we can use the SetEmissiveColor statement instead of the SetColor 
statement for the red color. We set red color to 255 in the SetEmissiveColor 
parameters in the CreateMeshBuilder section for the red faces:

  SetEmissiveColor, 255, 0, 0,  ;Red Green Blue

The rest of the contents of the csv object file for the cube remains the same. Now we 
will see that the red bottom of the cube is lit:

- 22 -



The Unofficial csv Object Handbook for OpenBVE

There is also a possibility to combine texture and material color. In the examples so 
far, we have used a colored materials on its own and textures on its own. This makes 
the texture colors to be shown as they are in the original texture file.

If we use a SetColor statement together with the LoadTexture statement, the color 
specified by SetColor will affect the texture. If we specify an all white color, the 
texture will not be affected, but any other color affects the texture.

If we want to make the texture darker, we change the material color to some shade of 
gray. Let's compare the cube with the rock texture with no color set and with a gray 
color set. We add the SetColor statement for the rock textured cube, and keeps the 
present LoadTexture statement.

SetColor, 155, 155, 155, 255,

This makes the cube shown to the right is a bit darker than the original one shown to 
the left:

- 23 -



The Unofficial csv Object Handbook for OpenBVE

BLANK PAGE

- 24 -



The Unofficial csv Object Handbook for OpenBVE

Chapter 4

Geometric shortcuts

- 25 -



The Unofficial csv Object Handbook for OpenBVE

So far, we have created our objects by manually specifying the vertices och the mesh 
that builds the object. In the csv object file format, there are a few shortcuts. If one 
want to create a cuboid or a cylinder, there are easily used statements. There is also a 
statement to shear objects.

The Cube statement, that can be used not only for cubes but also for cuboids, takes 
parameters for Half Width, Half Height, and Half Depth. The cube or cuboid is made 
around the 3D coordinate system's origin, and has its 6 faces and 8 vertices.

If we want to make a cube with the side 1 meter with all faces green, as we did 
manually in earlier examples in this book, we write:

CreateMeshBuilder

  Cube, 0.500000, 0.500000, 0.500000,  ; Cube w side 1m

  SetColor, 0, 255, 0, 255,  ; Green color to all faces

We achieve this result:

If we in the OpenBVE Object Viewer add the axes of the 3D coordinate system, we 
see that the center of the cube is at the origin of the coordinate system:

- 26 -



The Unofficial csv Object Handbook for OpenBVE

If we want the cube to have a texture surface, we need  to add the LoadTexture 
statement and also to add texture coordinates using the SetTextureCoordinates 
statement. To properly set the texture coordinates, we need to know the numbers of 
the automatically created vertices so we can “attach” the texture properly to the mesh:

Making the multicolored cube we made in chapter 3 using the Cube statement is 
however not possible, because all faces are automatically generated for each cube 
mesh we define. To make the multicolored cube, we can only define 2 faces for each 
of the 3 cube meshes we need to create. In this case we have to stick to manually 
define vertices and faces.

Another statement is the Cylinder statement. It is used for making cylinders, tapered 
cylinders and cones. It takes 4 parameters: The number of vertices to make the 
circular cross-section of the cylinder, Upper radius in meters, Lower radius in meters 
and the Height in meters. If the Lower radius is a positive number, the cylinder will 
be closed with a bottom cap, and the same condition applies to the top radius. If a 
negative number is used for any radius, the corresponding cap is omitted.

If either top or bottom radius is set to 0, we creates a cone. Just as with the Cube 
statement, the created geometry will be centered at the 3D coordinate system's origin.

To make a cylinder with a height and a radius of 1 meter(diameter of 2 meters), with 
a top cap (but no bottom cap) and yellow color, we can write this code:

CreateMeshBuilder

  Cylinder, 8, 1, -1, 1,

  SetColor, 255, 255, 0, 255,

- 27 -



The Unofficial csv Object Handbook for OpenBVE

The result of this code is this octagonal “cylinder”:

If we want a more circular cross-section, we increase the number of vertices in the 
Cylinder statement's 1st parameter. Just as with the cube described earlier in this 
chapter, the cylinder is centered at the 3D coordinate system's origin.

If we want the cylinder to have a texture surface, we need to add the LoadTexture 
statement and also to add texture coordinates using the SetTextureCoordinates 
statement. To properly set the texture coordinates, we need to know the numbers of 
the automatically created vertices so we can “attach” the texture properly to the mesh:

- 28 -



The Unofficial csv Object Handbook for OpenBVE

We can, as an example, wrap the stone texture around the octagonal “cylinder” by 
using this code:

CreateMeshBuilder

  Cylinder, 8, 1, -1, 1,

  LoadTexture, RockTexture.png

  SetTextureCoordinates,  0, 0.000000, 0.000000,
  SetTextureCoordinates,  1, 0.000000, 1.000000,
  SetTextureCoordinates,  2, 0.250000, 0.000000,
  SetTextureCoordinates,  3, 0.250000, 1.000000,
  SetTextureCoordinates,  4, 0.500000, 0.000000,
  SetTextureCoordinates,  5, 0.500000, 1.000000,
  SetTextureCoordinates,  6, 0.750000, 0.000000,
  SetTextureCoordinates,  7, 0.750000, 1.000000,
  SetTextureCoordinates,  8, 1.000000, 0.000000,
  SetTextureCoordinates,  9, 1.000000, 1.000000,
  SetTextureCoordinates, 10, 0.750000, 0.000000,
  SetTextureCoordinates, 11, 0.750000, 1.000000,
  SetTextureCoordinates, 12, 0.500000, 0.000000,
  SetTextureCoordinates, 13, 0.500000, 1.000000,
  SetTextureCoordinates, 14, 0.250000, 0.000000,
  SetTextureCoordinates, 15, 0.250000, 1.000000,

The result looks good at the sides, but the top looks really silly:

- 29 -



The Unofficial csv Object Handbook for OpenBVE

The problem is that we can not set the top face texture properly, as there already is a 
texture coordinate for every vertex the makes the top face. We need, as the example 
with to stone cube in chapter 2, make 2 identical cylinders at the same place, and 
define the side faces only for one of the cylinders, and the top face only for the other 
cylinder. This is not possible to do with the Cylinder statement, so we have in that 
case to resort to manually calculate the 3D coordinates for all 15 vertices.

- 30 -



The Unofficial csv Object Handbook for OpenBVE

Chapter 5

Manipulating objects

- 31 -



The Unofficial csv Object Handbook for OpenBVE

Using csv object files gives us a few statements that somehow manipulates already 
created objects. There are statements for moving the object's position, rotate or scale 
an object, and change an object's geometry by shearing it.

These statements all comes in two variants: One to manipulate just the (part of) the 
object that is define in a single CreateMeshBuilder section, one that affects all 
CreateMeshBuilder sections. The later statements all ends with “All”.

We start with the Translate (or TranslateAll) statement. It takes 3 parameters: 
Movement along the x-axis in meters, movement along the y-axis in meters and 
finally movement along the z-axis in meters.

To move the (part of an) object created in one CreateMeshBuilder section 5 meters 
away (on the z-axis) and move it down ½ meter (on the y-axis), we write in the end 
of the CreateMeshBuilder section:

Translate, 0, 5, 0.5,

To do the same movement for everything created in every CreateMeshBuilder 
section, we would write at the end of the csv object file:

TranslateAll, 0, 5, 0.5,

The next thing we can do is to rotate an object or all objects. The Rotate statement 
takes 4 parameters: x, y and z coordinates for the rotation axis, and the rotation angle 
in degrees counter-clockwise.

If we want to rotate the object 30 degrees clockwise around the z axis, we write:

Rotate, 0, 0, 1, -30,

To do the same rotation for everything created in every CreateMeshBuilder section, 
we would write at the end of the csv object file:

RotateAll, 0, 0, 1, -30,

We will do 2 examples of rotation, using the green cube from chapter 4.

- 32 -



The Unofficial csv Object Handbook for OpenBVE

We add the rotate statement to the code:

CreateMeshBuilder

  Cube, 0.500000, 0.500000, 0.500000,  ; Cube w side 1m

  SetColor, 0, 255, 0, 255,  ; Green color to all faces

  Rotate, 0, 0, 1, -30,

And the result is that the cube is rotated 30 degrees around the z axis:

To make next example more complicated, we will define a turning axis that is not 
parallel to the axes of the 3D coordinate system. We will define a rotation axis that 
goes through the cube's bottom left front corner and through the upper right far 
corner. Then we will rotate the cube 45 degrees counter-clockwise.

The code for this rotation is:

CreateMeshBuilder

  Cube, 0.500000, 0.500000, 0.500000,  ; Cube w side 1m

  SetColor, 0, 255, 0, 255,  ; Green color to all faces

  Rotate, 1, 1, 1, 45,

- 33 -



The Unofficial csv Object Handbook for OpenBVE

Here a view of the result:

The next manipulation statements are Scale and ScaleAll. They scale an object (or 
part of it). The statement takes 3 parameters: Scaling along the x, y and z axes. The 
parameters are decimal numbers, there 50% of original size is 0.5, no scaling/100% is
1.0, double size/200% is 2.0 and so on.

To double the size of an object, we write the code:

Scale, 2, 2, 2,

To do the same scaling for everything created in every CreateMeshBuilder section, 
we would write at the end of the csv object file:

ScaleAll, 2, 2, 2,

The last manipulation statements are Shear and ShearAll. This is doing what is called 
a shear mapping of the vertices for an object. The statement takes no less than 
7 parameters: x, y and z coordinates of a vector D⃗ , x, y and z coordinates of a 
vector S⃗ and a displacement ratio r.

This requires of course some explanation. To describe it in a 2D scenario, we can 
give a rectangular shape a slope along the vector D⃗ by moving  the ends of it in the 
direction of the vector S⃗ . The grade of the slope will be determined by the 
displacement ratio r.

- 34 -



The Unofficial csv Object Handbook for OpenBVE

This illustration is a try to show the shear statement's function in a 2D case.

We make an 3D example by again using the green cube from chapter 4. We will put 
the vector D⃗ along the x axis but in the opposite direction (from right to left), and 
the vector S⃗ along the y axis (from bottom and up), and select a displacement ratio 
of 1:1, which gives us a 45 degrees slope.

The code for this is:

CreateMeshBuilder

  Cube, 0.500000, 0.500000, 0.500000,  ; Cube w side 1m

  SetColor, 0, 255, 0, 255,  ; Green color to all faces

  Shear, -1, 0, 0, 0, 1, 0, 1,

The result looks like this:

- 35 -



The Unofficial csv Object Handbook for OpenBVE

We can also notice from the picture that the displacement takes place around the 
objects center, which in this case is the 3D coordinate system's origin. The left part of
the cube is lifted, the right part is lowered.

There is also, an mentioned, a ShearAll statement to affect all CreateMeshBuilder 
sections if put in the end of the csv object file. An example could be:

ShearAll, -.1, 0, 0, 0, 1, 0, 1,

- 36 -



The Unofficial csv Object Handbook for OpenBVE

Chapter 6

Transparency

- 37 -



The Unofficial csv Object Handbook for OpenBVE

There are 3 ways of achieving transparency, which are of different usability:

The first method is using the alpha channel setting for a material color. This allows 
for different levels of transparency by setting this parameter as a value in the range 0 
(fully transparent) to 255 (opaque/no transparency). This affects the whole texture, 
every color becomes more or less transparent. Therefore, it is of no use when we 
want to make a complicated contour such as a tree. This method is anyway not 
recommended by the developers of the OpenBVE program, as it is very processing 
intensive and can slow down the frame-rate of the simulation seriously.

The second way is to use the SetDecalTransparentColor statement. By this full 
transparency is achieved by setting a specific color (RGB value) as transparent. Every
part of the texture that we want transparent, we set to that color. This is much less 
processing intensive.

The third method is using the SetBlendMode statement. This makes an object fading 
out at a certain distance.

The alpha-channel method includes using the SetColor statement, in which one of the
parameters is alpha channel. If we already have a SetColor statement we just change 
the alpha channel parameter to a desired value. If we have just a LoadTexture 
statement, we add a SetColor statement with white color (red, green and blue set to 
255), which do not change the color of the texture, and use the alpha channel 
parameter to achieve some kind of partial transparency of the whole texture.

We try this with the cube that has a rock texture, and hide another multicolored cube 
behind it to demonstrate any transparency.

With the alpha channel value set to 255, full opacity, we see this:

- 38 -



The Unofficial csv Object Handbook for OpenBVE

Then we change the alpha channel value to 220, and now we suddenly see the other 
cube through the first one:

Lowering the alpha channel value even more, in this case to 150, we see even more 
of the multicolored cube hidden behind the first cube:

The csv object file code for the last example of the first cube is:

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

- 39 -



The Unofficial csv Object Handbook for OpenBVE

  AddFace, 0, 1, 3, 2,  ; Face 0
  AddFace, 1, 5, 7, 3,  ; Face 1
  AddFace, 5, 4, 6, 7,  ; Face 2
  AddFace, 4, 0, 2, 6,  ; Face 3
  AddFace, 4, 5, 1, 0,  ; Face 4
  AddFace, 2, 3, 7, 6,  ; Face 5

  SetColor, 255, 255, 255, 150,

  LoadTexture, RockTexture.png,

  ; Texture coord @ vertex 0
  SetTextureCoordinates, 0, 0.000000, 0.500000,  
  ; Texture coord @ vertex 1
  SetTextureCoordinates, 1, 0.500000, 0.500000,  
  ; Texture coord @ vertex 2
  SetTextureCoordinates, 2, 0.000000, 1.000000,  
  ; Texture coord @ vertex 3
  SetTextureCoordinates, 3, 0.500000, 1.000000,  
  ; Texture coord @ vertex 4
  SetTextureCoordinates, 4, 0.000000, 0.000000,  
  ; Texture coord @ vertex 5
  SetTextureCoordinates, 5, 0.500000, 0.000000,  
  ; Texture coord @ vertex 6
  SetTextureCoordinates, 6, 1.000000, 0.000000,  
  ; Texture coord @ vertex 7
  SetTextureCoordinates, 7, 1.000000, 1.000000,  

For the second cube, the multicolored, we use this code there we by using the 
TranslateAll statement has moved it behind the other one, when we load these 2 
cubes at the same time in the OpenBVE Object Viewer:

CreateMeshBuilder  ; Section for the green faces

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

- 40 -



The Unofficial csv Object Handbook for OpenBVE

  AddFace, 0, 1, 3, 2,  ; Face 0 – Front face
  AddFace, 5, 4, 6, 7,  ; Face 1 - Back face

  SetColor, 0, 255, 0, 255  ; Red Green Blue Alpha

CreateMeshBuilder  ; Section for the blue faces

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 1, 5, 7, 3,  ; Face 0 – Right side face
  AddFace, 4, 0, 2, 6,  ; Face 1 – Left side face

  SetColor, 0, 0, 255, 255  ; Red Green Blue Alpha

CreateMeshBuilder  ; Section for the red faces

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

  AddFace, 4, 5, 1, 0,  ; Face 0 – Top face
  AddFace, 2, 3, 7, 6,  ; Face 1 – Bottom face

  SetColor, 255, 0, 0, 255  ; Red Green Blue Alpha

TranslateAll, -1, -1, 3,  ; Move 1m left, 1m down 3m back

- 41 -



The Unofficial csv Object Handbook for OpenBVE

For the other method, using the SetDecalTransparentColor statement, we chose an 
example with two trees on a with black (RGB 0,0,0) background. The contours of the 
trees are complicated, and we cannot make them with a large number of vertices. 
Instead we put the rectangular picture on a rectangular “frame” with 4 vertices, and 
strip of anything black, the background, by setting black as transparent color.

We start with the texture that contains to trees och a black background. It is named 
“Tree_Pair.bmp” and has a height of 128 pixels and a width of 128 pixels. As 128 is a
power of 2, that is 27, so the format is suitable for a texture file.

We use this csv object code by  Mr. Anthony Bowden:

;Birmingham Cross-City BVE Route Object
;Cross-City South
;---------------------------------------
;By Anthony Bowden 2002-2008
;www.railsimroutes.co.uk
;
;Please acknowledge the original authors
;and keep this header intact
;
;See 'Readme.txt'

CreateMeshBuilder,

  AddVertex,-20,9,0,
  AddVertex,-20,0,0,
  AddVertex,0,-5,0,
  AddVertex,0,14,0,
  AddFace,3,2,1,0,

  GenerateNormals,

- 42 -



The Unofficial csv Object Handbook for OpenBVE

  LoadTexture, Tree_Pair.bmp,

  SetTextureCoordinates,0,00,0,
  SetTextureCoordinates,1,00,1,
  SetTextureCoordinates,2,01,1,
  SetTextureCoordinates,3,01,0,
  
  SetDecalTransparentColor,000,000,000,

The code starts with Mr. Bowden's copyright notice (in Sweden, where this book is 
published, quoting of copyrighted material is allowed by the law).

The the 4 vertices of the “frame” for the trees are defined. The GenerateNormals 
statement is obsolete in OpenBVE, but is required if one wants BVE2 compatibility. 

Then we use LoadTexture to add the picture of the trees, and SetTextureCoordinates 
to “attach” the picture to the “frame”.

The SetDecalTransparentColor statement sets everything black in the texture as 
transparent.

The final result is that the trees, with their complicated contours, have the black 
background removed as it is treated as transparent.

- 43 -



The Unofficial csv Object Handbook for OpenBVE

The third method of achieving some kind of transparency is the SetBlendMode 
statement. It takes 3 parameters: Blend Mode, Glow Half Distance and Glow 
Attenuation Mode.

These parameters determines how an object's color will be viewed. The default 
settings, that are used if this statement is not present, are equivalent with the setting: 

SetBlendMode, Normal, 0, 

This means that the object's color/texture replaces the background's color/texture 
there the object is in front of the background seen from the viewer.

If we change the Glow Half Distance parameter to any other positive value, the object
will fade away when coming closer to it. At the specified distance, the visibility of the
object will be 50%. The distance can be from 1 to 4095 meters, and must be an 
integer.

We set the Glow Half Distance parameter to 2 meters and see what happens:

SetBlendMode, Normal, 2,

At a distance of 5.5 meters, the stone cube looks normal, we do not see the 
multicolored cube hidden behind it:

- 44 -



The Unofficial csv Object Handbook for OpenBVE

Coming closer, at a distance of 3 meters, we start to see the fade-away effect on the 
stone cube, and the multicolored cube behind it begins to become visible:

At a distance of 2 meters, the multicolored cube is seen even more:

Going even closer, the stone cube will fade away completely.

The complete csv object file code for the stone cube is now:

CreateMeshBuilder

  AddVertex, -2.000000,2.000000,1.000000, ; Vertex 0
  AddVertex, -1.000000,2.000000,1.000000, ; Vertex 1
  AddVertex, -2.000000,1.000000,1.000000, ; Vertex 2
  AddVertex, -1.000000,1.000000,1.000000, ; Vertex 3
  AddVertex, -2.000000,2.000000,2.000000, ; Vertex 4
  AddVertex, -1.000000,2.000000,2.000000, ; Vertex 5
  AddVertex, -2.000000,1.000000,2.000000, ; Vertex 6
  AddVertex, -1.000000,1.000000,2.000000, ; Vertex 7

- 45 -



The Unofficial csv Object Handbook for OpenBVE

  AddFace, 0, 1, 3, 2,  ; Face 0
  AddFace, 1, 5, 7, 3,  ; Face 1
  AddFace, 5, 4, 6, 7,  ; Face 2
  AddFace, 4, 0, 2, 6,  ; Face 3
  AddFace, 4, 5, 1, 0,  ; Face 4
  AddFace, 2, 3, 7, 6,  ; Face 5

  SetColor, 150, 150, 150, 255,

  LoadTexture, RockTexture.png,

  SetBlendMode, Normal, 2,

  ; Texture coord @ vertex 0
  SetTextureCoordinates, 0, 0.000000, 0.500000,  
  ; Texture coord @ vertex 1
  SetTextureCoordinates, 1, 0.500000, 0.500000,  
  ; Texture coord @ vertex 2
  SetTextureCoordinates, 2, 0.000000, 1.000000,  
  ; Texture coord @ vertex 3
  SetTextureCoordinates, 3, 0.500000, 1.000000,  
  ; Texture coord @ vertex 4
  SetTextureCoordinates, 4, 0.000000, 0.000000,  
  ; Texture coord @ vertex 5
  SetTextureCoordinates, 5, 0.500000, 0.000000,  
  ; Texture coord @ vertex 6
  SetTextureCoordinates, 6, 1.000000, 0.000000,  
  ; Texture coord @ vertex 7
  SetTextureCoordinates, 7, 1.000000, 1.000000,    

The code of the multicolored cube is the same as in the earlier example at page 28-29.

If we however sets the blending mode to “Additive”, the light of the background's 
color/texture will be added to that of the object. That means that if we have a black 
background, nothing will be added and the object looks the way we have created it. If
we have any another background, the object will be brighter than we originally 
created it. If the background is white, the whole object will be white. This mode is set
by using the statement:

SetBlendMode, Additive, 0

- 46 -



The Unofficial csv Object Handbook for OpenBVE

We view the darker cube with a light gray background, the adding of the gray stone 
texture and the light gray background almost makes the cube white.

If we change the background to white, the cube will also be white and so not visible 
on the white background.

If we again put the multicolored cube behind the stone cube, we will see the 
multicolored cube through the stone cube at any distance. That is because the 
multicolored cube's clear colors will be added to those of the stone cube's texture:

If we use the Glow Half Distance parameter together with the Additive mode, the 
fade away effect on the stone cube will become visible as in the example with 
Normal blend mode.

SetBlendMode, Additive, 2

However, the fade away effect will be most visible where the gray background is, 
because the multicolored  cube is already seen in bright colors.

- 47 -



The Unofficial csv Object Handbook for OpenBVE

There is a last parameter to discover related to the SetBlendMode statement. That is 
the parameter Glow Attenuation Mode. It can take 2 values: DivideExponent2 or 
DivideExponent4. If this parameter is not set, the default value is DivideExponent4.

SetBlendMode, Normal, 2, DivideExponent2

If we set the Glow Attenuation Mode parameter to DivideExponent2, the fade-away 
effect of the stone cube in earlier example will become more gradually, and will start 
at a greater distance, compared to if the parameter is DivideExponent4.

Finally, there is a warning from the OpenBVE developers that is version 2 of 
OpenBVE, only additive Blend Mode will be supported, and that the Glow 
Attenuation Mode parameter will be abolished. At the moment this text is written, the
current version of OpenBVE is 1.4.2.0.

- 48 -



The Unofficial csv Object Handbook for OpenBVE

Chapter 8

Statements in Alphabetical Order

- 49 -



The Unofficial csv Object Handbook for OpenBVE

AddFace

    AddFace, v1, v2, v3, … vn,

Variable Type Notice

Vertex numbers in 
clockwise order

Integer from 0 and up At least 3 vertices are 
needed

The AddFace statement defines a face, which is a surface “stretched” between 
vertices in a mesh. Faces should be made up of polygons of 3 or more vertices, and 
the order of vertices should be clockwise. Face polygons should not be self-
intersecting.

The parameters are the number of those vertices that should make the face. The 
vertex number is the order number in which it is defined within the 
CreateMeshBuilder section.

The face surface is not visible just because it is defined as a face, but the face must be
colored by the SetColor (or SetEmissiveColor) statement, or given a texture by the 
LoadTexture statement. All faces defined in the same CreateMeshBuilder section will
get the same color or texture (if any is defined).

Also, the face is only visible from one side, which is the side where the vertices 
number parameters are in clockwise order.

In those rare cases a face needs to be visible from both sides, the AddFace2 statement
can be used.

Example 1:

  AddFace, 2, 4, 3, 1,

This describes a face made of 4 vertices.

- 50 -



The Unofficial csv Object Handbook for OpenBVE

AddFace2

    AddFace2, v1, v2, v3, … vn,

Variable Type Notice

Vertex numbers in 
clockwise order

Integer from 0 and up At least 3 vertices are 
needed

The AddFace2 statement defines a face, which is a surface “stretched” between  
vertices in a mesh. Faces should be made up of polygons of 3 or more vertices, and 
the order of vertices should be clockwise. Face polygons should not be self-
intersecting.

The parameters are the number of those vertices that should make the face. The 
vertex number is the order number in which it is defined within the 
CreateMeshBuilder section. The vertices must be stated in clockwise order when the 
face is seen from the side which should be the “front” side of the face..

The face surface is not visible just because it is defined as a face, but the face must be
colored by the SetColor (or SetEmissiveColor) statement, or given a texture by the 
LoadTexture statement. All faces defined in the same CreateMeshBuilder section will
get the same color or texture (if any is defined).

The face made with the SetFace2 statement will be visible from both sides. The 
lighting conditions will be properly shown at what is the face's front side, but may not
be shown properly at the “back” side.

Use the AddFace2 statement only when the use of the AddFace statement is not 
usable.

Example 1:

  AddFace2, 2, 4, 3, 1,

This describes a face made of 4 vertices, which will be visible from both sides.

- 51 -



The Unofficial csv Object Handbook for OpenBVE

AddVertex

AddVertex, X, Y ,Z, nX, nY, nZ,

Variable Type Notice

X coordinate Decimal number Positive right of the 
origin, negative left of 
the origin

Y coordinate Decimal number Positive up from the 
origin, negative down 
from the origin

Z coordinate Decimal number Positive behind the 
origin, negative in front 
of the origin

Normal X coordinate Decimal number Omit for automatic 
normal calculation

Normal Y coordinate Decimal number Omit for automatic 
normal calculation

Normal Z coordinate Decimal number Omit for automatic 
normal calculation

The AddVertex statement defines a vertex in the mesh that makes (a part) of an 
object. The 3 first parameters are the x, y and z coordinates for the vertex, the 3 last 
parameters, that are optional, are the x, y and z coordinates for the normal of that 
vertex. If the 3 last parameters are omitted, the normals are automatically calculated 
by OpenBVE.

The vertices are referred to by the order (from 0 and up) in which they are defined 
within a CreateMeshBuilder section.

Example 1:

  AddVertex, 1, 0, 1,
 

- 52 -



The Unofficial csv Object Handbook for OpenBVE

CreateMeshBuilder

CreateMeshBuilder,

The CreateMeshBuilder statement starts a section in a csv object file, in which a 
mesh, faces and the face properties are defined.

A csv object file must contain one but may contain more CreateMeshBuilder 
statements.

- 53 -



The Unofficial csv Object Handbook for OpenBVE

Cube

Cube, Half width, half height, half depth

Variable Type Notice

Half width Decimal number Half the width in meters 
(along the x axis)

Half height Decimal number Half the height in meters
(along the y axis)

Half depth Decimal number Half the depth in meters 
(along the z axis)

The Cube statement defines a cube or cuboid with the 3D coordinate system's origin 
in its center. The statement automatically defines 8 vertices and 6 faces, which must 
be considered if referring to the order number of faces and vertices in the same 
CreateMeshBuilder section. The vertices are created in this order:

Example 1:
  Cube, 1, 1, 1,

This describes a cube with the side 1 meter.

Example 2:
  Cube, 2, 1, 3,

This describes a cuboid with the width 2 meters, the height 1 meter and the 
depth 3 meters.

- 54 -



The Unofficial csv Object Handbook for OpenBVE

Cylinder

Cylinder, vertices, U radius, L radius, Height,

Variable Type Notice

Vertices Positive integer Number of vertices for 
the cylinder's base

Upper radius Decimal number Upper radius in meters. 
If negative, no top cap 
face will be created

Lower radius Decimal number Lower radius in meters. 
If negative, no bottom 
cap face will be created.

Height Decimal number The height in meters. If 
negative, the cylinder's 
faces will be visible from 
the inside, if positive, 
they will be visible from 
the outside.

The Cylinder statement defines a cylinder or other frustum. The cylinder is not 
perfectly round, but its base will be a polygon with the number of vertices described 
in the first parameter. If the upper and lower radius are equal, we get what can be 
approximated as a cylinder, else we get a frustum or, in case one of the radii is 0, a 
cone.

If the height is set to a positive value, the faces of the cylinder will be visible from the
outside. If the height is a negative value, the faces will only be visible from within the
cylinder.

The created object is centered around the 3D coordinate system's origin.

- 55 -



The Unofficial csv Object Handbook for OpenBVE

The statement automatically defines a number of vertices and faces, which must be 
considered if referring to the order number of faces and vertices in the same 
CreateMeshBuilder section. The vertices, if the parameter Vertices is set to 8, are 
created in this order:

Example 1:

  Cylinder, 8, 1, -1, 1,

This describes creating a cylinder with 8 vertices in the base (which formally 
makes an octagonal cross-section), the upper radius 1 m, lower radius also 1 m 
(the negative radius value indicates that no bottom cap face is created), and a 
height of 1 m.

- 56 -



The Unofficial csv Object Handbook for OpenBVE

GenerateNormals

GenerateNormals,

The GenerateNormals statement is used in csv object files BVE 2 and BVE 4 to 
automatically generate normals for vertices defined with the AddVertex statement.

It has no function in OpenBVE; normals are generated automatically if they are not 
explicitly defined in the AddVertex statements.

Example 1:

CreateMeshBuilder,

  AddVertex,-0.4,3.7,0,
  AddVertex,-0.4,3.7,-13,
  AddVertex,-0.9,3.55,0,
  AddVertex,-0.9,3.55,-13,
  AddVertex,-1.1,3.35,0,
  AddVertex,-1.1,3.35,-13,
  AddVertex,-1.1,0,0,
  AddVertex,-1.1,0,-13,
  AddFace,0,1,3,2,
  AddFace,2,3,5,4,
  AddFace,4,5,7,6,

  GenerateNormals,

This describes the beginning of a csv object file for BVE2 or BVE 4 with 8 
vertices, 3 faces, and the GenerateNormals statement after those other 
definitions.

- 57 -



The Unofficial csv Object Handbook for OpenBVE

LoadTexture

LoadTexture, Daytime texture, Nighttime texture

Variable Type Notice

Daytime texture Character string File type could be 
Windows bitmap (.bmp) 
or Portable Network 
Graphics (.png)

Nighttime texture Character string File type could be 
Windows bitmap (.bmp) 
or Portable Network 
Graphics (.png)

The LoadTexture statement takes 2 parameters, which both are file names of a 
texture. It may include a relative path, should the texture image file not be in the 
same folder as the csv object file.

Normally, only the Daytime texture is stated. Nighttime textures are only used when 
making train interior and exterior definitions, but normally never in a route.

The file type could be a Windows bitmap (.bmp) or a Portable Network Graphics 
(.png) file.

The height and width in pixels of the texture file should be a power of 2. Such 
numbers from 20 to 210 are: 1, 2, 4, 8, 16, 32, 64, 128, 256, 516 and 1024.

Example 1:

  LoadTexture, WoodenWall.png,

This loads a texture file WoodenWall.png, that can be applied to one or more 
faces, within a CreateMeshBuilder section, by a set of SetTextureCoordinates 
statements.

- 58 -



The Unofficial csv Object Handbook for OpenBVE

Rotate

Rotate, Ax, Ay, Az, Angle,

Variable Type Notice

Ax Decimal number The x component of the 
rotation axis A⃗

Ay Decimal number The y component of the 
rotation axis A⃗

Az Decimal number The z component of the 
rotation axis A⃗

Angle Decimal number The rotation in degrees 
counter-clockwise

The Rotate statement rotates all vertices created so far in a CreateMeshBuilder 
section around a rotation axis. The rotation axis is defined by a vector A⃗ . The 
direction of the rotational axis vector is set by its x, y, z components.

The Rotate statement takes 4 parameters: The x, y, z component of the vector A⃗
which defines the rotational axis, and the rotation in degrees around the mentioned 
rotation axis.

The rotation is counter-clockwise if the Angle parameter is positive, and clockwise if 
that parameter has a negative value.

The Rotate statement affects all vertices defined so far in the CreateMeshBuilder 
section where it is used. More than one Rotate statement can be used in a single 
CreateMeshBuilder section.

If a rotation around one of the axes of the 3D coordinate system is wanted, set the 
corresponding rotation axis parameter to 1 and the other 2 rotation axis parameters 
to 0.

- 59 -



The Unofficial csv Object Handbook for OpenBVE

Example 1:

  Rotate, 0, 0, 1, -45,

This describes a 45 degrees clockwise rotation around the 3D coordinate 
system's z axis.

- 60 -



The Unofficial csv Object Handbook for OpenBVE

RotateAll

Rotate, Ax, Ay, Az, Angle

Variable Type Notice

Ax Decimal number The x component of the 
rotation axis A⃗

Ay Decimal number The y component of the 
rotation axis A⃗

Az Decimal number The z component of the 
rotation axis A⃗

Angle Decimal number The rotation in degrees 
counter-clockwise

The RotateAll statement do the same thing as the Rotate statement, but affects all 
CreateMeshBuilder sections written before the RotateAll statement. The 4 parameters
are also the same as for the Rotate statement.

Example 1:

  Rotate, 0, 1, 0, -45,

This describes a 45 degrees clockwise rotation around the 3D coordinate 
system's y axis.

- 61 -



The Unofficial csv Object Handbook for OpenBVE

Scale

Scale, x, y, z,

Variable Type Notice

x Decimal number Scale factor along the x 
axis

y Decimal number Scale factor along the y 
axis

z Decimal number Scala factor along the z 
axis

The Scale statement scales an object (or part of it). It takes 3 parameters: x that is the 
scale factor along the x axis, y that is the scale factor along the y axis, and z that is 
the scale factor along the z axis.

The scale factor tells how many times the original size the scaled object should be. A 
scale factor of 1 means the original size, a scale factor of 0.5 means half the original 
size, a scale factor of 2 means double size, and so on.

The Translate statement affects all vertices defined so far in the CreateMeshBuilder 
section where it is used. More than one Translate statement can be used in a single 
CreateMeshBuilder section.

Example 1:

  Scale, 2, 2, 2,

This describes a scaling of all distances between vertices created so far in the 
CreateMeshBuilder to double the original size.

- 62 -



The Unofficial csv Object Handbook for OpenBVE

ScaleAll

ScaleAll, x, y, z,

Variable Type Notice

x Decimal number Scale factor along the x 
axis

y Decimal number Scale factor along the y 
axis

z Decimal number Scala factor along the z 
axis

The ScaleAll statement do the same thing as the Scale statement, but affects all 
CreateMeshBuilder sections written before the ScaleAll statement. The 3 parameters 
are also the same as for the Scale statement.

Example 1:

  ScaleAll, 0.5, 0.5, 0.5,

This describes a scaling of all distances between vertices in all 
CreateMeshBuilder sections before the ScaleAll statement to half the original 
size.

- 63 -



The Unofficial csv Object Handbook for OpenBVE

SetBlendMode

SetBlendMode, Blend mode, Glow half distance,
Glow attenuation mode,

Variable Type Notice

Blend mode Text string Can take 2 values: 
“Normal” or “Additive”. 
Default value is 
“normal”.

Glow half distance Integer To disable glow 
attenuation, set to 0. 
Else the value can be 1 
to 4095. Default value 
is 0.

Glow attenuation mode Text string Can take 2 values: 
“DivideExponent2” or 
“DivideExponent4”. 
Default value is 
“DivideExponent4”

The SetBlendMode sets the blend mode for all faces in the CreateMeshBuilder 
section it is used. It takes 3 parameters: Blend Mode, Glow Half Distance and Glow 
Attenuation Mode.

For a further description on how the SetBlendMode statement works, please refer to 
pages 44-48.

- 64 -



The Unofficial csv Object Handbook for OpenBVE

SetColor

SetColor, Red, Green, Blue, Alpha channel,

Variable Type Notice

Red Integer 0 to 255

Green Integer 0 to 255

Blue Integer 0 to 255

Alpha channel Integer 0 to 255

The SetColor parameter sets the color of all faces created in a CreateMeshBuilder 
Section.

The SetColor statement takes 4 parameters: The first parameter determines the 
amount of red, the second the amount of green, the third the amount of blue, and the 
fourth the alpha channel.

All colors can be made up of a proper mix of red, green and blue. The alpha channel 
determines the amount of transparency of the color. As we want no transparency, we 
set the value to 255 (a value of 0 will mean full transparency). The value for each of 
these 4 parameters can range from 0 to 255.

Example 1:

  SetColor, 255, 255, 255, 255,

This describes white color and no transparency.

- 65 -



The Unofficial csv Object Handbook for OpenBVE

SetDecalTransparentColor

SetDecalTransparentColor, Red, Green, Blue,

Variable Type Notice

Red Integer 0 to 255

Green Integer 0 to 255

Blue Integer 0 to 255

The SetDecalTransparentColor statement makes one specified color in a texture 
bitmap transparent.

Set SetDecalTransparentColor statement takes 3 parameters which specifies the color 
that should be rendered as transparent: The first parameter determines the amount of 
red, the second the amount of green, the third the amount of blue.

Example 1:

  SetDecalTransparentColor, 0, 0, 255,

This describes that all fully blue pixels in the texture image should be 
considered transparent.

Please notice that colors which may look the same as the “transparent” color, 
but have different color values, will be rendered. In this example, the RGB 
color 0,0,254 will look fully blue too, but will not be considered transparent.

- 66 -



The Unofficial csv Object Handbook for OpenBVE

SetEmissiveColor

SetEmissiveColor, Red, Green, Blue,

Variable Type Notice

Red Integer 0 to 255

Green Integer 0 to 255

Blue Integer 0 to 255

The SetEmissiveColor parameter sets the emissive color of all faces created in a 
CreateMeshBuilder Section.

The SetColor statement takes 3 parameters: The first parameter determines the 
amount of red, the second the amount of green, and the third the amount of blue.

All colors can be made up of a proper mix of red, green and blue. The value for each 
of these 3 parameters can range from 0 to 255.

The difference between the SetColor and SetEmissiveColor statements are that colors
set by SetColor are affected by the light conditions. The color set by SetColor may be
bright if in the light or it may be in the shadow. The SetEmissiveColor statement 
gives a color that is always bright independent of the lighting conditions. That is 
usable for objects the emits light such as signals, lighting armature etc.

Example 1:

  SetEmissiveColor, 255, 0, 0,

This describes a red emissive color set for all faces in a CreateMeshBuilder 
section.

- 67 -



The Unofficial csv Object Handbook for OpenBVE

SetTextureCoordinates

SetTextureCoordinates, Vertex number, A, B,

Variable Type Notice

Vertex Integer

A coordinate Decimal number

B coordinate Decimal number

The SetTextureCoordinates statement is used to “attach” a texture to one or more 
faces in a CreateMeshBuilder section.

The SetTextureCoordinates statement takes 3 parameters: The first is the vertex 
number, the second is the A coordinate of the texture to “attach” to that vertex, and 
the third is the B coordinate of the texture to attach to that vertex.

For a further description on how the SetTextureCoordinates statement works, please 
refer to pages 10-18.

- 68 -



The Unofficial csv Object Handbook for OpenBVE

Shear

Shear, Dx, Dy, Dz, Sx, Sy, Sz, r

Variable Type Notice

Dx Decimal number x coordinate for
vector D⃗

Dy Decimal number y coordinate for
vector D⃗

Dz Decimal number z coordinate for
vector D⃗

Sx Decimal number x coordinate for
vector S⃗

Sy Decimal number y coordinate for
vector S⃗

Sz Decimal number z coordinate for
vector S⃗

r Decimal number Displacement ratio

The Shear statement shears an object in the direction of a vector S⃗  along a vector
D⃗ . The displacement ratio gives the amount of sharing in the direction of S⃗ . The

Shear statement affects all vertices created so far in a CreateMeshBuilder section.

The Shear statement takes no less than 7 parameters: The first 3 parameters are the x, 
y, and z coordinates of the vector D⃗ , the next 3 parameters are the x, y, and z 
coordinates of the vector S⃗ , and the seventh parameter is the displacement ratio.

For a further description on how the Shear statement works, please refer to 
pages 34-36.

- 69 -



The Unofficial csv Object Handbook for OpenBVE

ShearAll

ShearAll, Dx, Dy, Dz, Sx, Sy, Sz, r

Variable Type Notice

Dx Decimal number x coordinate for
vector D⃗

Dy Decimal number y coordinate for
vector D⃗

Dz Decimal number z coordinate for
vector D⃗

Sx Decimal number x coordinate for
vector S⃗

Sy Decimal number y coordinate for
vector S⃗

Sz Decimal number z coordinate for
vector S⃗

r Decimal number Displacement ratio

The ShearAll statement do the same thing as the Shear statement, but affects all 
CreateMeshBuilder sections written before the ShearAll statement. The 7 parameters 
are also the same as for the Shear statement.

- 70 -



The Unofficial csv Object Handbook for OpenBVE

Translate

Translate, x, y, z,

Variable Type Notice

x Decimal number Translation along the x 
axis in meters.

y Decimal number Translation along the y 
axis in meters.

z Decimal number Translation along the z 
axis in meters.

The Translate statement moves an object in the 3D space. The statement takes 3 
parameters: x that is the movement along the x axis in meters where a positive 
number moves the object to the right and a negative number to the left; y that is the 
movement along the y axis in meters where a positive number mover the object 
upwards and a negative number downwards; z that is the movement along the z axis 
where a positive number is away from the viewer and a negative number is towards 
the viewer.

The Translate statement affects all vertices defined so far in the CreateMeshBuilder 
section where it is used. More than one Translate statement can be used in a single 
CreateMeshBuilder section.

Example 1:

  Translate, -3, -1, 5.5,

This describes a movement of all vertices defined so far in the 
CreateMeshBuilder section 3 meters to the left, 1 meter downwards and 5.5 
meters away from the viewer.

- 71 -



The Unofficial csv Object Handbook for OpenBVE

TranslateAll

TranslateAll, x,y,z,

Variable Type Notice

x Decimal number Translation along the x 
axis in meters.

y Decimal number Translation along the y 
axis in meters.

z Decimal number Translation along the z 
axis in meters.

The TranslateAll statement do the same thing as the Translate statement, but affects 
all CreateMeshBuilder sections written before the TranslateAll statement. The 
3 parameters are also the same as for the Translate statement.

Example 1:

  TranslateAll, -3, -1, 5.5,

This describes a movement of all vertices in all CreateMeshBuilder sections 
before the TranslateAll statement 3 meters to the left, 1 meter downwards and 
5.5 meters away from the viewer.

- 72 -



The Unofficial csv Object Handbook for OpenBVE

;

; Comment text

Comment text in an  csv object file begins with ;. The comment can be on a line of its
own, or after some other statement on a line.

Example 1:

; This is a comment

This is a comment on a line of its own

Example2:

  AddFace, 0, 1, 3, 2,  ; Face 0
  AddFace, 1, 5, 7, 3,  ; Face 1
  AddFace, 5, 4, 6, 7,  ; Face 2
  AddFace  4, 0, 2, 6,  ; Face 3
  AddFace, 4, 5, 1, 0,  ; Face 4
  AddFace, 2, 3, 7, 6,  ; Face 5

These are comments on lines with statements.

- 73 -


